CITY OF BRYAN, OHIO

Storm Water Detention Calculations

Detention calculations are to be submitted with a site plan for approval at the time of application for a building permit. The following form is to be used for storage volume and meter line sizing.

Project \qquad Location \qquad
Calculation by \qquad Date \qquad Checked by \qquad Date \qquad

Proposed Conditions

Gross Area: \qquad Acres = \qquad S.F. (A_{T})

Pavement Area: \qquad S.F. Building Area: \qquad S.F.

Total Impervious Area: \qquad S.F. * $0.90=$ \qquad $\left(\mathrm{CA}_{\mathrm{I}}\right)$
Net Pervious Area: Gross Area - Impervious = \qquad S.F. * $0.20=$ \qquad $\left(\mathrm{CA}_{\mathrm{P}}\right)$

Wt. C. $=\mathrm{C}_{\mathrm{W}}=\mathrm{CA}_{\mathrm{I}} / \mathrm{A}_{\mathrm{T}}+\mathrm{CA}_{\mathrm{P}} / \mathrm{A}_{\mathrm{T}}=$ \qquad
Allowable Q
Qallow $=\mathrm{CiA}=0.20 * 3.0 * \mathrm{~A}_{\mathrm{T}} / 43560=$
Note: $\mathrm{i}_{5}=3.0$ "/hour (5 year, 20 min .)

DETENTION VOLUME REQUIRED

t_{c} (min)	i_{25} $\mathrm{in} / \mathrm{hr}$	$\mathrm{C}_{\mathrm{w}} \mathrm{A}$ A=Acres	Q in Q 25	Q out $=$ Q allow	Q in - Q out	(Q in - Q out)* $\mathrm{t}_{\mathrm{c}} * 60$ Volume $\left(\mathrm{ft}^{3}\right)$	Design Detention Volume $\left(\mathrm{ft}^{3}\right)$
20	4.40						
25	4.00						
30	3.40						
35	3.20						
40	2.80						
50	2.40						
60	2.10						
70	1.80						
80	1.70						
90	1.50						
100	1.40						

Note: Design Detention Volume shall be the peak volume reached within the time t_{c}.

Meter Line Sizing (Culvert Analysis)

$H=\frac{V^{2}}{2 g}\left(1+K_{e}+\frac{29 n^{2} L}{R 4 / 3}\right)$
$2 g H=V^{2}(1+K_{e}+\underbrace{29 n^{2} L}_{R 4 / 3})$
$V^{2}=\frac{2 g H}{\left(1+K_{e}+\frac{29 n^{2} L}{R 4 / 3}\right)}$

Data:

1. Length of meter line (L) ___ ft.
2. Slope of meter line \qquad \%
3. Size of meter line ___ in.
4. Pipe type \& "n" \qquad
5. Entrance Co-efficient $\left(\mathrm{K}_{\mathrm{e}}\right)=0.5$
6. Assumed Max. Head (H) ___ ft
7. Hydr. Radius (R)
(R 4/3) \qquad

Assumed Head (H)	$\mathrm{H} * 2 \mathrm{~g}$	$1+\mathrm{K}_{\mathrm{e}}+\frac{29 n^{2} \mathrm{~L}}{\mathrm{R} 4 / 3}$	$\mathrm{~V}^{2}$	V	Area of Pipe (A)	Flow Q.

Note:

- No meter line shall be less than 6" diameter. If calculations show otherwise, please note as such.
- Assumed Head (H) is measured from top of meter line at outlet to water elevation in detention facility.

